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I. Introduction

T HE need to maintain accurate relative orientation between
spacecraft is critical in many satellite formation missions. For

instance, in interferometry application, the relative orientation
between spacecraft in a formation is required to be maintained pre-
cisely during formation maneuvers. In interspacecraft laser commu-
nication operation, the participating spacecraft are also required to
maintain accurate relative attitude throughout the communication
process. This control problem, commonly referred to as attitude
synchronization in the literature, has attracted much research
attention. Various solutions have been proposed and these can be
broadly classified according to the advocated techniques: leader–
follower [1–4], virtual structure [5,6], behavior-based [7–11], and
graph-theoretical approach [12–15].

In particular, the graph-theoretical approach has been actively
studied for cooperative control of multi-agent system using limited
local interaction [16,17] and was adopted for attitude synchroniza-
tion problem in [12–15]. In the above-cited decentralized attitude
synchronization results, except [14,15], it is assumed that the
interspacecraft communication links are undirected (i.e. bidirec-
tional). However, in practice, the interspacecraft communication
topology may be restricted to be directed, such as in unidirectional
satellite laser communication system. The control problem of
attitude synchronization under directed communication topology is
more challenging as compared with the case with undirected
communication topology. This issue was studied in [14] but the
proposed control law requires derivative of the angular velocity,
which may introduce additional noise into the system. Furthermore,
the attitude-tracking performance analysis in [14] is applicable only
to the casewhere the directed graph can be simplified to a graph with
only one node. This constraint on communication topology is relaxed
in [15], which uses modified Rodriguez parameters and Euler–
Lagrange system to describe the satellite attitude dynamics.
However,modifiedRodriguez parameters contain singularity and are

thus not suitable for the development of globally stabilizing control
algorithms.

This Note proposes a decentralized adaptive sliding-mode control
lawwhich regulates attitude and angular velocity errors of individual
spacecraft with respect to reference commands and minimizes
relative attitude and angular velocity errors between spacecraft.
Thus, the proposed control law ensures that each spacecraft attains
desired time-varying attitude and angular velocity while maintaining
attitude synchronization with other spacecraft in the formation even
in the presence of model uncertainties and external disturbances.
Moreover, the design is applicable to general communication
topology and is not restricted to ring topology or undirected
communication topology.

In the following section, unit quaternion representation will be
introduced into the satellite attitude control problem and algebraic
graph theory will be applied to describe general directed commu-
nication topology.

II. Attitude Dynamics and Mathematical Preliminaries

A. Spacecraft Attitude Dynamics

The rigid spacecraft attitude-tracking error dynamics is described
as follows [18]:

Ji _~!i ��!�i Ji!i � Ji� ~!�i R� �qi�!di � R� �qi� _!di �
� ui � zi; i� 1; . . . ; n (1)

_q i � 1
2
�q�i � q0;iI� ~!i; i� 1; . . . ; n (2)

_q 0;i ��1
2
qTi ~!i; i� 1; . . . ; n (3)

where superscript i denotes the ith spacecraft in the formation,
!di 2 R3 denotes the desired angular velocity of the ith spacecraft
with respect to the inertial frame I. In addition, !i 2 R3 denotes the
body angular velocity of the ith spacecraft with respect to an inertial
frame I, ~!i � !i � R� �qi�!di denotes the angular velocity error,R� �qi�
is the rotation matrix from the ith spacecraft’s reference frame to its
body-fixed frame, qi 2 R3 and q0;i 2 R denote the vector part and
scalar part of error quaternion, respectively, zi 2 R3 denotes the
disturbance torque, ui 2 R3 denotes the control torque, I denotes
the 3 � 3 identity matrix, Ji 2 R3�3 denotes the inertia matrix, The
notation a� for a vector a� � a1 a2 a3 �T is used to denote the
following skew-symmetric matrix:

a� �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5

It can be seen from Eqs. (1–3) that the spacecraft attitude-tracking
problem is equivalent to an asymptotic stabilization problem for ~!i
and qi.

B. Algebraic Graph Theory

The necessary results from algebraic graph theory are introduced
in this section to address the decentralized cooperative attitude
synchronization problem using a general directed communication
topology. A directed communication topology can be described by
directed graph. A directed graphGn consists of a finite set of vertices,
denoted V, and a set of arcs A 	 V2, where a � ��; �� 2 A and
�; � 2 V. The arc ��; �� denotes that vertex � can obtain the
information of vertex �. In spacecraft attitude synchronization
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application, the arc ��; �� denotes spacecraft � can obtain attitude
information of spacecraft �. It is assumed that the graph has no
self-loops, meaning that ��; �� 2 A implies � ≠ �. The adjacency
matrix of Gn, denoted A is a square matrix of size n with entries�

ai;j > 0 if ��j; �i� 2 A

ai;j � 0 otherwise
��i; �j 2 V� (4)

where the nonnegative ai;j is subsequently chosen to be the control
weight parameter for attitude synchronization between the ith and jth
spacecraft. Note that ai;i � 0 from Eq. (4).

The in-degree matrix ofGn is the diagonal matrixDwith diagonal
entries

di;i �
Xn

j�1;j≠i
ai;j; i� 1; . . . ; n (5)

Following [19], the LaplacianL 2 Rn�n of the graphGn is defined as

L�D � A (6)

Note that a graph with the property that for any ��; �� 2 A, the arc
��; �� 2 A as well is said to be undirected. In spacecraft attitude
synchronization application, this corresponds to having bidirectional
measurement. It is valid to assume ai;j � aj;i in the case of the
undirected communication topology. Under this assumption, the
Laplacian L is a symmetrical matrix, which simplifies the stability
analysis of cooperative control system. However, in the case of
directed communication topology, L is generally not symmetric
because ai;j � aj;i does not hold.

The following results will be used in Sec. III to derive stability
proof for the proposed controller design.

Lemma 1 [19]: For a directed graph Gn with N vertices, all the
eigenvalues of theweighted LaplacianL have a nonnegative real part
(follows from Gershgorin’s theorem).

Lemma 2 [20]: Suppose that M 2 Rm�m, N 2 Rn�n, X 2 Rm�m,
and Y 2 Rn�n. The following results hold:

1) �M 
 N��X 
 Y� �MX
 NY, where 
 denotes the
Kronecker product.

2) Suppose that M and N are invertible. Then
�M
 N��1 �M�1 
 N�1.

3) Let �1; . . . ; �m be the eigenvalues ofM and�1; . . . ; �n be those
of N. Then the eigenvalues of M 
 N are �i�j (i� 1; . . . ; m and
j� 1; . . . ; n).

III. Robust Adaptive Control Law Design for Attitude
Synchronization and Tracking

In this section, a decentralized adaptive sliding-mode control law
is proposed for attitude synchronization and tracking using a general
directed communication topology. Firstly, the multispacecraft
sliding-mode vector is developed. Subsequently, a decentralized
adaptive sliding-mode control law is derived based on the
multispacecraft sliding-mode vector.

The following assumptions are made about the dynamics of the
attitude synchronization and tracking systems

Assumption 1: Let Ji � �Ji ��Ji, where �Ji and�Ji are the
nominal part and uncertain part of the inertia matrix of the ith
spacecraft, respectively. The inertia matrix uncertainty �Ji is
assumed to satisfy k�Jik � �i;0;

Assumption 2: The desired angular velocity of spacecraft with
respect to the inertial frame I, denoted by !di , and its time derivative
_!di are assumed to be bounded;
Assumption 3: All the environmental disturbances due to

gravitation, solar radiation pressure, magnetic forces and
aerodynamic drag are assumed to be bounded. Thus, the external
disturbances zi are assumed to satisfy kzik � �i;

Assumption 4: The control law of each spacecraft might use
angular velocity errors and error quaternions of its neighboring
spacecraft in the cooperative attitude control problem, and error
quaternion is bounded from its definition. Thus, the control torque ui
is assumed to satisfy

kuik � �i;0 � �i;1
X
j2Ni
k ~!jk � �i;2

X
j2Ni
k ~!jk2

where �i and �i;j (i� 1; . . . ; n, j� 0; 1; 2) are unknown nonnegative
constant, Ni denotes the ith spacecraft and all spacecraft with which
the ith spacecraft can communicate, and k � k denotes the standard
Euclidean vector norm or induced matrix norm, as appropriate.

A. Multispacecraft Sliding Manifold

In this subsection, the multispacecraft sliding-mode vector is
developed in order to guarantee attitude synchronization and
tracking in spacecraft formation and is defined as

S� �s1; . . . ; sn�T (7)

where si 2 R3�1 is given by

si � bi �Ji� ~!i � Cqi� �
Xn

j�1;j≠i
aij�� �Ji ~!i � �Jj ~!j�

� � �JiCqi � �JjCqj��; i� 1; . . . ; n (8)

with C being a positive definite constant matrix, scalar bi > 0 is the
control weight parameter for attitude tracking of the ith spacecraft
(station-keeping behavior), scalar aij 
 0 defined in is the control
weight parameter for interspacecraft attitude synchronization
between the ith and jth spacecraft (formation-keeping behavior)

and �Ji is the nominal inertia matrix of the ith spacecraft.
Remark 1: In the case of undirected communication topology, it is

valid to assume ai;j � aj;i in Eq. (8). This assumption greatly
simplifies the stability proof of the cooperative attitude control
system, because some terms involving ai;j in the time derivative of
the Lyapunov function are eliminated by mutual cancellation.
However, it is not valid to assume ai;j � aj;i in the case of directed
communication topology. Thus, cooperative control for attitude
synchronization under directed communication topology is more
challenging as compared with the case of undirected communication
topology.

Using the Kronecker product, the multispacecraft sliding
vector (7) can be rewritten as

S� ��L� B� 
 I3��J� ~�� ~CQ� (9)

where ~�� � ~!1; . . . ; ~!n�T , Q� �q1; . . . ; qn�T , B� diag�b1; . . . ; bn�,
~C� diag�C; . . . ; C� 2 R3n�3n, L is the weighted Laplacian matrix
corresponding to the interspacecraft directed communication

topology as described in Eq. (6), and �J� diag� �J1; . . . ; �Jn�.
Themultispacecraft sliding-mode surface is then defined asS� 0.

In view of Lemma 1, result 3 in Lemma 2, and the definition of B, it
follows that �L� B� 
 I3 has full rank. Furthermore, �J has full rank.
Consequently, ��L� B� 
 I3��J has full rank. Thus, it follows that
~�� ~CQ� 0 on the sliding-mode surface S� 0 from Eq. (9).

~�� ~CQ� 0 implies ~!i � Cqi � 0 (i� 1; . . . ; n). It is obvious
that ~!i � Cqi � 0 implies that

lim
t!1
k ~!ik � lim

t!1
kqik � 0; i� 1; � � � ; n (10)

It can be concluded that on the multispacecraft sliding-mode surface
S� 0, the attitude error and angular velocity error of each spacecraft
will approach zero as t!1.

B. Decentralized Adaptive Sliding-Mode Control Design

This subsection presents the adaptive sliding-mode control law
which ensures that the spacecraft attitude error dynamics (1–3) will
converge to the sliding manifold S� 0.

To develop the control law, the following equations are derived
from Eqs. (1) and (2):

�J i� _~!i � C _qi� � hi � �i � ui; i� 1; � � � ; n (11)
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with

hi�t�≜ �!�i �Ji!i � �Ji� ~!�i R� �qi�!di � R� �qi� _!di �

� 1

2
�JiC�q�i � qi;0I� ~!i (12)

�i�t�≜ zi ��Ji _~!i � !�i �Ji!i ��Ji� ~!�i R� �qi�!di � R� �qi� _!di �
(13)

where �i�t� represents the inertia matrix uncertainties and external
disturbances. Under Assumptions 1–4 and the definition of L and B,
it can be shown that

k�L� B� 
 I3k1k�i�t�k1 � ci;0 � ci;1
X
j2Ni
k ~!jk1 � ci;2

X
j2Ni
k ~!jk21

(14)

where ci;0, ci;1, and ci;2 are nonnegative constant numbers.
However, in the conventional sliding-mode control laws for

attitude control in [18,21,22], an important assumption is that inertia
uncertainties and external disturbances are bounded and that their
bounds are known to the designer. Typically, bounds on the uncer-
tainties and external disturbances of spacecraft are not available. The
implementation of the control law, based on a conservative bound,
may result in impractically large control authority and control
chattering. Therefore, in order to avoid the requirement of prior
knowledge of the upper bound of k�L� B� 
 I3k1k�i�t�k1, an
adaptive mechanism is introduced to estimate its upper-bound
parameters.

Let ĉi;0, ĉi;1, and ĉi;2 denote the estimates of ci;0, ci;1, and ci;2,
respectively. Now consider the simple adaptation laws for the upper
bound of the norm k�L� B� 
 I3k1k�i�t�k1 such that

_~ci;0 ≜ �i;0ksik1 _~ci;1 ≜ �i;1ksik1
X
j2Ni
k ~!jk1

_~ci;2 ≜ �i;2ksik1
X
j2Ni
k ~!jk21 (15)

where ~ci;0 � ĉi;0 � ci;0, ~ci;1 � ĉi;1 � ci;1, and ~ci;2 � ĉi;2 � ci;2 are
parameter adaptation errors, �i;0, �i;1, and �i;2 are positive adaptive
gains, and si is the component of multispacecraft sliding-mode
vector S, which is defined in Eq. (8).

The control input ui 2 R3�1 for the ith spacecraft is proposed as

ui ��hi �
� Xn
j�1;j≠i

aij � bi
��1� Xn

j�1;j≠i
aij�uj � hj�

� Kisi � �̂isgn�si�
�
; i� 1; . . . ; n (16)

where hi is defined in Eq. (12), Ki 2 R3�3 is a positive definite

gain matrix, aij and bi are defined in Eq. (8), sgn�si�≜
� sgn�si;1� sgn�si;2� sgn�si;3� �T , si;j (j� 1; 2; 3) is the jth
component of si, sgn��� denotes the sign function, i.e.,

sgn �x� �
(
1; x > 0

0; x� 0

�1; x < 0

and �̂i is the adaptive upper bound of the norm k�L� B� 

I3k1k�i�t�k1 and is defined by

�̂ i ≜ ĉi;0 � ĉi;1
X
j2Ni
k ~!jk1 � ĉi;2

X
j2Ni
k ~!jk21; i� 1; . . . ; n (17)

Note that in the proposed control law (16), the information flow
between spacecraft includes the absolute inertial attitude and angular
velocity, the desired attitude and angular velocity, and control input,
as well as the nominal inertia matrix. Each spacecraft also need to
know its own absolute inertial attitude and angular velocity, its own
desired attitude and angular velocity, and its own nominal inertia

matrix. Quaternion error and angular velocity error in Eq. (16) can be
calculated by using the absolute inertial attitude and angular velocity,
as well as the desired attitude and angular velocity. If the desired
attitude and angular velocity for each spacecraft are identical, then
these two terms are not included in the information flow. Compared
with [8], the information flow between spacecraft for the proposed
control law includes two more items: the control input and the
nominal inertia matrix.

The following theorem establishes the condition for the existence
of the multispacecraft sliding-mode surface S� 0 for spacecraft
formation attitude-tracking systems described by Eqs. (1–3).

Theorem 1: Consider the spacecraft formation attitude-tracking
dynamics described by Eqs. (1–3) with the decentralized adaptive
sliding-mode control law (16) and the adaptation law (15). If the
Assumptions 1–4 are valid, then the multispacecraft sliding-mode
surface S� 0 defined in Eq. (7) will be reached asymptotically.

Proof: The candidate Lyapunov function is chosen as

V � V1 � V2 (18)

with

V1 �
1

2
STS V2 �

1

2

Xn
i�1
���1i;0 ~c2i;0 � ��1i;1 ~c2i;1 � ��1i;2 ~c2i;2�

Using the Kronecker product and the definition of adjacent matrix A
and in-degree matrix D of interspacecraft communication graph,
Eq. (16) can be rewritten as

U��H� ��D� B��1 
 I3���A
 I3��U�H� �KS � �̂sgn�S��
(19)

where U� �u1; . . . ; un�T , H � �h1; . . . ; hn�T , K� diag�K1; . . . ; Kn�
and �̂� diag��̂1I3; . . . ; �̂nI3�.

The above equation can rewritten as

U��H � fI3n � ��D� B��1 
 I3��A
 I3�g�1

� ��D� B��1 
 I3��KS� �̂sgn�S��

� �H � ��L� B� 
 I3��1�KS� �̂sgn�S�� (20)

where the following equality is used:

I3n � ��D� B��1 
 I3��A
 I3�
� ��D� B��1 
 I3�f��D� B� 
 I3� � A
 I3g
� ��D� B��1 
 I3���L� B� 
 I3� (21)

Taking the first derivative of V1 and using Eqs. (9) and (11) leads to

_V1 � ST _S� ST ��L� B� 
 I3���J _���J ~C _Q�
� ST ��L� B� 
 I3��H � ��U� (22)

where �� ��1; . . . ; �n�T .
Substituting Eq. (20) into the above equation yields

_V1 � ST ��L� B� 
 I3��� ST�̂sgn�S� � STKS

�
Xn
i�1
��sTi Kisi � �̂iksik1 � k�L� B� 
 I3k1 � k�ik1 � ksik1�

�
Xn
i�1

�
�sTi Kisi �

�
ĉi;0 � ĉi;1

X
j2Ni
k ~!jk1 � ĉi;2k ~!ik21

�
ksik1

� ksik1 �
�
ci;0 � ci;1

X
j2Ni
k ~!jk1 � ci;2

X
j2Ni
k ~!jk21

��

�
Xn
i�1

�
�sTi Kisi �

�
~ci;0 � ~ci;1

X
j2Ni
k ~!jk1 � ~ci;2

X
j2Ni
k ~!jk21

�
ksik1

�

(23)

Taking the first derivative of V2 and making use of the parameter
adaptation law (15) yields
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_V2 �
Xn
i�1
���1i;0 ~ci;0 _~ci;0 � ��1i;1 ~ci;1 _~ci;1 � ��1i;2 ~ci;2 _~ci;2�

� �
Xn
i�1

��
~c0 � ~c1

X
j2Ni
k ~!jk1 � ~c2

X
j2Ni
k ~!jk21

�
ksik1

�
(24)

Adding the above equation to Eq. (23) leads to

_V � �
Xn
i�1

sTi Kisi � 0 (25)

Therefore, it follows that si 2 L1, and ~ci;0, ~ci;1, and ~ci;2 2 L1.
Consequently, from Eq. (16) and Assumption 2, it is obtained that

ui 2 L1. It follows that _~!i, _qi, and hence _si are all bounded from

Eqs. (1) and (2). Integrating _V gives the results that si 2 L2. Hence,
using the corollary of Barbalat’s lemma, it follows that
limt!1si�t� � 0 (i� 1; . . . ; n). Thus, limt!1S�t� � 0. □

Remark 2: There is no assumption on interspacecraft
communication topology in the proposed control law. Thus, the
proposed control law is applicable to any communication topology
and is not restricted to be ring topology or undirected communication
topology. The stability of the proposed control law is guaranteed
even when there is no communication link, then each spacecraft will
be controlled individually.

Remark 3: Unlike [8,10], there is no additional restriction on
parameters bi and aij other than bi > 0, aij 
 0 in Eq. (16). So the
proposed attitude synchronization and tracking scheme will allow
the designer to prioritize between station-keeping behavior and
formation-keeping behavior. For example, if one wants to prioritize
formation-keeping behavior, aij should be chosen to be large relative
to bi.

Remark 4: In the proposed control law, the desired attitude of each
spacecraft with respect to inertial frame I is not restricted to be the
same. Thus, the desired relative attitude between spacecraft can be
maintained.

Remark 5: The proposed control law is discontinuous across the
surface S�t�, thus leading to control chattering. This situation can be
remedied by smoothing out the control discontinuity in a thin
boundary layer neighboring the switching surface [23]. To do this,
the sign function in the control law (16) can be replaced by a
saturation function, which is defined as

sat �x� �

8<
:
1 if x

	

 1

x
	

if � 1< x
	
< 1

�1 if x
	
� 1

where 	 is the boundary-layer thickness. The practical advantages of
control law with this boundary layer may be significant, although it
leads to small terminal tracking error. However, it should be pointed
out that in this case the estimated gains ~ci;0, ~ci;1, and ~ci;2 in Eq. (15)
may becomeunbounded in the boundary layer, since the restriction to
the sliding surface cannot always be achieved. To address this
problem, the adaptive sliding-mode control law given in Eq. (16) is
modified as

ui ��hi �
� Xn
j�1;j≠i

aij � bi
��1� Xn

j�1;j≠i
aij�uj � hj�

� Kis0i � �̂isat�si�
�
; i� 1; . . . ; n (26)

where sat�si�≜ �sat�si;1�; sat�si;2�; sat�si;3��T , with s0i � �s0i;1; s0i;2;
s0i;3�T and s0i;j � si;j � 	sat�si;j� (i� 1; . . . ; n and j� 1; 2; 3), a

measure of the algebraic distance of the current state to the boundary
layer [23].

The adaptation laws (15) are modified as

_~ci;0 ≜ �i;0ks0ik1 _~ci;1 ≜ �i;1ks0ik1
X
j2Ni
k ~!jk1

_~ci;2 ≜ �i;2ks0ik1
X
j2Ni
k ~!jk21 (27)

Following [23], the convergence to the boundary layer can be easily
shown. As seen from Eq. (27), the adaptation ceased as soon as the
boundary layer is reached. This avoids the undesirable long-term
drift found in many adaptive schemes and provides a consistent rule
on when to cease adaptation.

IV. Illustrative Example

Simulation results are presented in this section to illustrate the
performance and stability characteristics of the proposed
decentralized sliding-mode control law. Two scenarios with four
spacecraft are considered in the simulation. In the first scenario, the
four spacecraft communicate via a directed line topology as shown in
Fig. 1a, while a ring topology, shown in Fig. 1b, is used in the second
scenario. Note that although both communication graphs have a
spanning tree, the proposed control law is valid evenwhen there is no
spanning tree. The corresponding weighted Laplacian matrices for
the topologies are

La �

1 �1 0 0

0 1 �1 0

0 0 1 �1
0 0 0 0

2
664

3
775 Lb �

1 �1 0 0

0 1 �1 0

0 0 1 �1
�1 0 0 1

2
664

3
775

The actual inertia matrices of the spacecraft are assumed to be as
follows (with unit expressed in kg �m2):

J1 �
20 2 0:9

2 17 0:5

0:9 0:5 15

2
64

3
75; J2 �

22 1 0:9

1 19 0:5

0:9 0:5 15

2
64

3
75

J3 �
18 1 1:5

1 15 0:5

1:5 0:5 17

2
64

3
75; J4 �

18 1 1

1 20 0:5

1 0:5 15

2
64

3
75

To validate the robustness of the proposed control law against model
uncertainties and external disturbances, the nominal inertia matrices
of the spacecraft are assumed to be

�J 1 � �J2 � �J3 � �J4 � diag��20; 20; 20�T� kg �m2

and different sinusoidal-wave disturbances as in Eq. (28) are
introduced to each spacecraft:

Fig. 1 Interspacecraft directed communication topology.

J. GUIDANCE, VOL. 34, NO. 4: ENGINEERING NOTES 1279



z1�t� � �0:10 sin�0:4t�; 0:05 cos�0:5t�; 0:08 cos�0:7t��T Nm

z2�t� � �0:06 cos�0:4t�; 0:10 sin�0:5t�; 0:05 sin�0:7t��T Nm

z3�t� � �0:08 sin�0:4t� pi=4�; 0:06 cos�0:5t� pi=4�;
0:07 cos�0:7t� pi=4��T Nm

z4�t� � �0:06 cos�0:4t� pi=4�; 0:08 sin�0:5t� pi=4�;
0:10 sin�0:7t� pi=4��T Nm (28)

The external disturbances used in the simulation are far worse than
those observed in practice.

The initial angular velocity errors of all spacecraft are chosen to be
zeros, and the initial attitude-tracking errors are chosen as

�q 1�0� � � 0:8986 0:4 �0:1 0:15 �T;
�q2�0� � � 0:8888 �0:2 0:1 0:4 �T;
�q3�0� � � 0:8062 0:1 �0:5 0:3 �T;
�q4�0� � � 0:8426 �0:4 �0:2 0:3 �T

The initial desired quaternions are �
di �0� � � 1 0 0 0 �T
(i� 1; 2; 3; 4). The time-varying desired angular velocities of the
spacecraft are identical and given by Eq. (29). Then, the desired
quaternions can be generated by using the attitude kinematic
equations and Eq. (29):

!di �t� � � 0:1 cos�t=10� �0:1 sin�t=10� �0:1 cos�t=10� �T

i� 1; 2; 3; 4 (29)

A. Scenario 1: Line Communication Topology

The controller parameters in the first scenario are chosen with
C� I3, bi � 1, 	� 0:1i, andKi � 0:01I3, and the parameters of the
adaptation law (27) are chosen with ��i;0 � 0:1, ��i;1 � ��i;2 � 0:2
(i� 1; . . . ; 4), and ĉ0i;0 � ĉ0i;1 � ĉ0i;2 � 0, where ĉ0i;0, ĉ

0
i;1, and ĉ

0
i;2 are

the initial values of ĉi;0, ĉi;1, and ĉi;2, respectively.
Figures 2 and 3 show the respective attitude errors and control

torques of the first spacecraft using the control law, respectively. For
ease of interpretation, attitude errors are expressed in Euler angles
converted from unit quaternion. Attitude errors and control torques
of the other spacecraft are similar to those of the first spacecraft andFig. 2 Attitude tracking error of the first spacecraft.

Fig. 3 Control torque of the first spacecraft.

Fig. 4 Relative attitude error between the first and the second
spacecraft.

Fig. 5 Relative attitude error between the fourth and the first

spacecraft.

Fig. 6 Adaptive parameter �̂1 of the first spacecraft.
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are not plotted here due to space constraint. Figures 4 and 5 show
relative attitude errors between the first and second spacecraft and
between fourth and first spacecraft, respectively. Relative attitude
errors between other pairs of spacecraft are similar to those of the

above two. The adaptive parameter �̂1 defined in Eq. (17) with the
control law (26) is bounded as shown in Fig. 6, and thus the efficacy
of our proposed adaptation law (27) is verified. For comparison,
Figs. 7–9 show attitude errors, control torques and relative attitude
errors when there is no coupling between neighbors [i.e., aij � 0
(i; j� 1; 2; 3; 4) in Eq. (26)]. As observed from simulation results,

relative attitude errors between spacecraft, especially the steady-state
values, in the case with coupling between neighbors are smaller as
compared with the case without coupling. Note that the magnitudes
of steady-state control torques for the two cases are almost identical,
as can be seen from Figs. 3 and 8.

B. Scenario 2: Ring Communication Topology

All the controller parameters in the second scenario are identical to
those in the first scenario, except that a41 � 1 in the second scenario.
Figures 10 and 11 show relative attitude errors between the first and
second spacecraft and between fourth and first spacecraft, respec-
tively. As observed from Figs. 4, 5, 10, and 11, relative attitude errors
in the ring topology are slightly smaller than those in the line
topology, because additional coupling between fourth to first
spacecraft is introduced in the ring topology. Thus, the simulation
results validate the effectiveness of the proposed control law under a
unidirectional ring communication topology.

V. Conclusions

In this Note, the attitude synchronization and tracking problem in
spacecraft formation under a general directed communication
topology is addressed using unit quaternion parameterization. A
decentralized adaptive sliding-mode control law is designed by
introducing appropriate multispacecraft sliding-mode vector, which
includes attitude error and angular velocity error of individual
spacecraft, as well as relative attitude errors and relative angular
velocity errors between spacecraft. An adaptive mechanism to
estimate the model uncertainty and external disturbance bound was
presented. Convergence of the tracking errors was established using

Fig. 7 Attitude tracking error of the first spacecraft without coupling
between neighbors.

Fig. 8 Control torque of the first spacecraft without coupling between
neighbors.

Fig. 9 Relative attitude error between the first and the second

spacecraft without coupling between neighbors.

Fig. 10 Relative attitude error between the first and the second
spacecraft under the ring topology.

Fig. 11 Relative attitude error between the fourth and the first
spacecraft under the ring topology.
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graph theoretic formulation. Numerical simulations are performed to
validate the robust performance of the proposed control law in the
presence of model uncertainties and disturbances. Simulation results
demonstrate that each individual spacecraft converges to the desired
attitude and angular velocity with acceptable control magnitude.
Furthermore, relative attitude errors between spacecraft, especially
the steady-state values, are reduced by including the relative attitude
errors and relative angular velocity errors in the proposed control law.
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